Metric Spaces and Topology
Lecture 2
vertices edges
Examples (contioned). o let $G:=(\stackrel{V}{V}$, E) be a connected undirected graph (finite or infinite).

Let $d: V \times V \rightarrow \mathbb{N}$

$(u, v) \mapsto$ the length of the shortest path from '' ho v.
Check that his is indeed a metric.
Fox exangle, let $n \in \mathbb{N}^{+}$al $V:=\{0,\}^{n}:=$ the ot of all 0^{-1} sequences of length n, e.g. $\{0,1\}^{2}=\{00,01,10,11\}$. We put an edge between two vertices $u, v \in\{0,1\}^{n}$ it u al \checkmark differ bs 1 bit, ecg. 011 al 010 . This defines a graph called the Hamming graph, clenoted H. Thus, there is the shortest path metric on this graph. Show that
$d_{A}(u, v)=\#$ of bits h_{s} which n al v diftec. This is also called the Hanning distance.

O broups as netric spaes. Le P be a group Itgrically infinite). It S be a syanetric set of genecatocs for Γ (syonetric: = losed maber inveress). E.y. \mathbb{Z} with $s:=\{ \pm 1\}$. The Cagles geaph of Γ with respect to ζ is $\operatorname{Cag}_{s}(\Gamma):=\left(\Gamma, E_{s}\right)$, where we pat an edre between $\gamma_{1}, r_{2} \in T$ if $\gamma_{1} \cdot \sigma=\gamma_{2}$ for sone $\sigma \in S$.

E.g. $\mathbb{Z}, S:=\{ \pm 1, \pm 2\}$

E.y. $\mathbb{F}_{2}:=\langle a, b\rangle$ teree $j p$ on 2 genecators. "Yreduced words in sj-bols $a^{ \pm 1}, b^{ \pm 1\}}$, wese roduced meass a al $a^{-1}, b l b^{-1}$ don't appear next to cadh othor. E.y. $a b^{-1} b^{-1} a b$ is rechued hut $a b b^{4} b^{-1}$ isc if. The group
operation $w_{1} \cdot w_{2}$ is defied by the concatenating the works w_{1} al w_{2} into $w_{1} w_{2}$ al reducing it lie. canceling the neightouring $a, a^{-1} \quad d b, b^{4}$). Let $\left.s:=4 a^{ \pm 1}, b^{-11}\right\}$.
c

4-cegalar time

Viering Cayley graphs as metric spaces (with the shortest path metric) started a very active math area (by Gronov) called geometric soup theory. This cabjed itucties the geometric properties of groups l see how they corcelate with algebraic properties.

- For example, the growth of the group. For Γ a sp al S a syunctric gen. set, let $g: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $g(n):=\#$ of
clenents in the ball of cadius n at the idendity in Cejs (r). Eig. For $\mathbb{Z} \mathbb{C} S:=\{ \pm 1\}, g(n)=2 n+1$.
For \mathbb{F}_{2} with $S:=\left\{a^{ \pm 1}, b^{ \pm 1}\right\}, \quad g(a)=4 \cdot 3^{n-1}+1$.
For \mathbb{Z}^{2} with $S:=\{(\pm 1,0),(0, \pm())\}, g(n)=C \cdot n^{2}+D$.
 The "asy-ptotic" behavioc of g doen't depend on S, e.g. polywowial stags polynomial.
Question. Which fintah genecated
It's not tercibly hard to show hat all f.g. alelian beaups al even nilpotent yroups e even victially nilpotent sraups have polynor mial scouth.

Gromov's than. A finitel, sen. gocoup has poly. gronth if and ouly if it is vichually nilpotent.

Mis is a stunning theorem as if cecovers an algebraic/qualitative propert) from a yeoutric/quasti-
stative owe.

O Cantor space. $X:=\left\{0, \mathbb{1}^{\mathbb{N}}=: 2^{\mathbb{N}}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}: x_{n} \in\{0,1\}, \forall_{n} \in \mathbb{N}\right\}\right.$.

Check hat in fact d is an ultra-metric, ie.

$$
d(x, z) \leq \max \{d(x, y), d(y, z)\} .
$$

let $: \in 2^{\mathbb{N}}$, what is $B_{2^{-n}}(x) ? B_{2^{-n}}(x)=\left\{y \in 2^{\mathbb{N}}:\left.y\right|_{n}-\left.x\right|_{n}\right\}$

$$
\begin{aligned}
& \|=:\left[\begin{array}{lll}
x_{0} x_{1} x_{2} & x_{n-1}^{n}
\end{array}\right] \\
& \bar{B}_{2^{-(n-1)}}(x)
\end{aligned}
$$

- Bare space.

Let $x:=\mathbb{N}^{\mathbb{N}}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}: x_{n} \in \mathbb{N}\right.$ for all $\left.n \in \mathbb{N}\right\}$.

$$
0 / d(x, y):=2^{-n(x, y)} \text {, here } n(x, y):=\text { the }
$$ least index i st. $\left.x\right|_{i}=\left.y\right|_{i}$.

this is agcir a ultra-metric.

Def. Let (X, X) be a utric space. For a nonempty set $S \leq X$, define its diameter by diand $(S):=\sup _{x, s \in S} d(x, s)$.

Def let $\left(x, d_{x}\right)$ of $\left(Y, d_{y}\right)$ be metric spaces. A function $f: X \rightarrow Y$ is called an isoneticy if $\forall x_{1}, x_{2} \in X$, $d_{y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{x}\left(x_{1}, x_{2}\right)$.

Note the isonety is necessarily an injection, but dosh's have to be serjective.

Find a noticed on \mathbb{R}^{n} such ht the map $f:\{0, \beta\}^{n} \rightarrow \mathbb{R}^{n}$
given by $101101 \leftrightarrow(1,0,1,1,0,1)$ is an isouetry from the Hamming distance to d.

